BINARY SYSTEMS WITH Li₂SO₄ AS ONE OF THE COMPONENTS

M. Touboul, E. Le Samedi, N. Sephar, F. Broszniowski, P. Edern and E. Bétourné

LABORATOIRE DE RÉACTIVITÉ ET DE CHIMIE DES SOLIDES, URA CNRS 1211, UNIVERSITÉ DE PICARDIE, 33 RUE SAINT-LEU, 80039 AMIENS, CEDEX, FRANCE

Six binary systems were studied using DTA with supplementary XRD. In Li₂SO₄-MSO₄ systems (M = Mg, Co, Ni), a primary solid solution with α -Li₂SO₄ structure (high-temperature form) and an incongruent melting compound Li₂M_y(SO₄)_{1+y} exist: y = 2 with Mg and y = 1 with Co and Ni. In Li₂SO₄-Li₃XO₄ systems (X = P, V), which are very different from one another, only primary solid solutions exist. In the Li₂SO₄-Li₂B₄O₇ system there is neither a solid solution nor an intermediate compound. Comparisons with previous investigations are made.

Keywords: binary systems, DTA, Li2SO4, solid solution, XRD

Introduction

Li₂SO₄ is dimorph and its melting point is 860°C. It is an interesting compound for several reasons. The $\beta \rightarrow \alpha$ transition, at 572°C, is coupled with a considerable change of enthalpy, 24.2 kJ·mol⁻¹, which is three times stronger than the melting enthalpy [1]. The ionic conductivity increases from 1.26×10^{-7} S·cm⁻¹ at 300°C [2] to 1.08 S·cm⁻¹ at 600°C [3]. These two properties are probably connected. In order to obtain a good ionic conductor material at a temperature lower than 600°C, many mixtures with Li₂SO₄ as one of the components have been examined. The study of binary systems is of interest in this connection because homogeneous and heterogeneous solid regions are clearly bounded. Moreover, the presence or absence of intermediate compounds and boundaries of primary or intermediate solid solutions can also be determined. We present here six binary systems, which have been studied in the last few years and make some comments on the techniques used, mainly DTA and XRD, and the results obtained. Generally, the entire binary system was examined except in the MSO₄ (M = Mg, Co, Ni)rich ends due to decomposition of these sulphates.

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Experimental

Reagent grade salts were used when available; this was the case for Li_3PO_4 and for hydrated sulphates $-Li_2SO_4 \cdot H_2O$, MgSO₄·7H₂O, CoSO₄·7H₂O and NiSO₄·7H₂O – which were carefully dehydrated. Li₃VO₄ and Li₂B₄O₇·3H₂O were synthesised from LiOH·H₂O, V₂O₅ and H₃BO₃ [4, 5]. Several DTA and XRD instruments were successively used; details of procedures are reported elsewhere [6, 7, 8].

Results and discussion

Li₂SO₄-MSO₄ systems

Though MSO₄ (M = Mg, Co, Ni) compounds are isostructural [9], the binary systems are slightly different (Figs 1, 2 and 3). These sulphates are not soluble in β -Li₂SO₄ and slightly soluble in α -Li₂SO₄. The main difference arises from the intermediate compounds, which melt incongruently. With Mg[8], Li₂Mg₂(SO₄)₃ exists: its structure has been described [10]. The diagram (Fig. 1) agrees closely

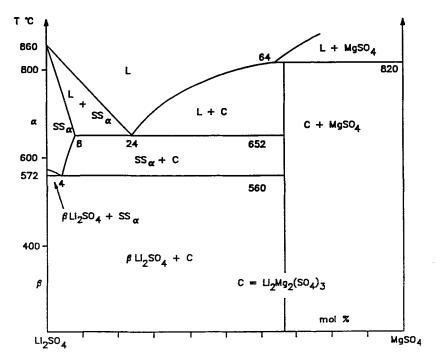
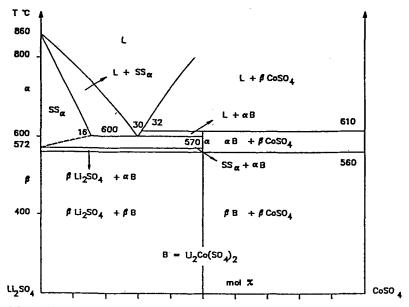
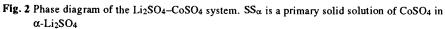




Fig. 1 Phase diagram of the Li₂SO₄-MgSO₄ system. SS_{α} is a primary solid solution of MgSO₄ in α -Li₂SO₄

1152

J. Thermal Anal., 40, 1993

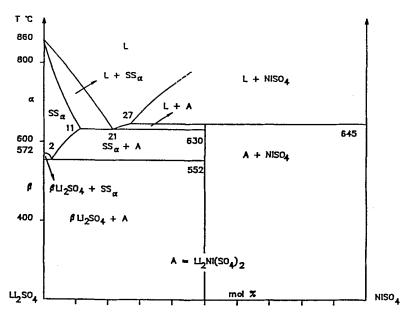


Fig. 3 Phase diagram of the Li₂SO₄-NiSO₄ system. SS $_{\alpha}$ is a primary solid solution of NiSO₄ in α -Li₂SO₄

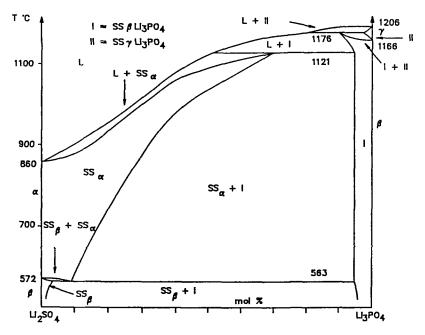


Fig. 4 Phase diagram of the Li₂SO₄-Li₃PO₄ system. SS_α and SS_β are primary solid solutions of Li₃PO₄ in respectively α-Li₂SO₄ and β-Li₂SO₄

with previous studies except for two where either another form of Li₂SO₄ is found [11] or an intermediate compound, Li₂Mg₄(SO₄)₅, has been described [12]. Two forms of Li₂Co(SO₄)₂ were found with a transition at 560°C (Fig. 2); this phenomenon is clearly distinct from that of the β -Li₂SO₄ $\rightarrow \alpha$ -Li₂SO₄ transition and has been pointed out only in the 50–90 CoSO₄ mol% composition range [6]. With Ni, the compound Li₂Ni(SO₄)₂ exists [6] (Fig. 3). Li₂Ni(SO₄)₂ and β -Li₂Co(SO₄)₂ were identified by X-ray powder diffraction but were never obtained alone; they are always accompanied by components arising from partial reversibility of the peritectic reactions [6]. This phenomenon is often observed when a substance melts incongruently [13]. Previous investigations also indicated a compound, Li₄Ni(SO₄)₃, with a congruent melting point [14].

Li₂SO₄-Li₃XO₄ systems

Three forms of Li₃PO₄ exist and Li₂SO₄ is slightly soluble in each (Fig. 4); on the other hand, solubility of Li₃PO₄ in α -Li₂SO₄ increases with temperature: a large region of Li_{2+z}S_{1-z}P_zO₄ solid solution is found, until z equals 0.7. No intermediate phase exists in the system [7]. This last result was recently questioned by Wijayasekera and Mellander [15], who suggested, on the basis of poorly defined DSC peaks, that an intermediate phase, Li₅PSO₈, exists within the temperature range 556° to 566°C. This interpretation clashes with our observations and especially the Tammann graph of the 563°C phenomena inferred from DTA experiments. The reason for this divergence may be the fact that, in DSC-mode, the samples were heated only up to $850^{\circ}C$ [15], which does not permit attainment of the liquid phase (Fig. 4) and good homogeneity of the mixture. Our first results on the Li₃VO₄-Li₂SO₄ phase diagram almost agree with the previous study of Liang *et al.* [16]: there is no intermediate compound in this system as found with Li₃PO₄, but the boundaries of primary solid solution were slightly different especially on the Li₃VO₄ side. The complete diagram will be published later, following further experimentation.

Li₂SO₄-Li₂B₄O₇ system

This system has never been studied before. The aim was to find a possible intermediate compound and to specify at which temperature the liquid phase appears before undertaking conductivity measurements. Results of a few DTA experiments led to the diagram presented in Fig. 5. In this system there is neither a solid solution nor an intermediate compound.

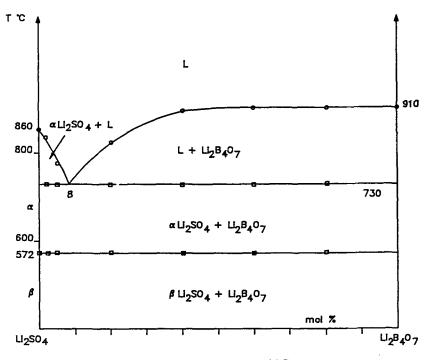


Fig. 5 Phase diagram of the Li₂SO₄-Li₂B₄O₇ system

J. Thermal Anal., 40, 1993

Conclusion

DTA is the best method to establish a phase diagram although other techniques such as XRD are also useful [13]. However, sometimes results obtained by XRD measurements are not convincing, such as those conducted at several temperatures on Li₂SO₄-Li₃PO₄ mixtures in order to delimit the boundaries of solid solutions [15]. These investigators [15] found a lower solid solubility of Li₃PO₄ in α -Li₂SO₄, especially at temperatures approaching the eutectoid point, which is, according to them, situated at about 1 mol% Li₃PO₄ instead of about 10 mol% Li₃PO₄ in our DTA measurements (Fig. 4).

We can see that the solid solubility of MSO₄ in α -Li₂SO₄ is low; the main reason is the difference of environment of Li⁺ which is tetrahedral and of M^{2+} which is octahedral [6]. The considerable solubility of Li₃PO₄ in α -Li₂SO₄ may be explained by the structural analogy between these two compounds where the cations have the same tetrahedral environment and almost the same size: $r_{S6+} =$ 0.12 Å and $r_{p5+} = 0.17$ Å [17]. As $r_{V5+} = 0.36$ Å [17], the difference in size with S6+ may explain the low solubility of Li₃VO₄ in Li₂SO₄. On the other hand, no reason can be given for the presence or absence of the intermediate compounds and to justify their different formulae; these may be found only after experiments.

References

- 1 G. Hatem, Thermochim. Acta, 88 (1985) 433.
- 2 M. A. K. L. Dissanayake and B. E. Mellander, Solid State Ionics, 21 (1986) 279.
- 3 A. Lunden, Solid State Ionics, 28-30 (1988) 163.
- 4 M. Touboul and A. Popot, J. Less Common Metals, 115 (1986) 337.
- 5 M. Touboul and E. Bétourné, Solid State Ionics (in press).
- 6 M. Touboul, P. Ederm, F. Broszniowski and E. Bétourné, Solid State Ionics, 50 (1992) 323.
- 7 M. Touboul, N. Sephar and M. Quarton, Solid State Ionics, 38 (1990) 225.
- 8 M. Touboul, E. Le Samedi and M. Quarton, J. Less Common Metals, 146 (1989) 67.
- 9 M. Wildner, Z. Kristallogr., 191 (1990) 223.
- 10 M. Touboul, M. Quarton, J. Lokaj and V. Kettmann, Acta Cryst., C44 (1988) 1887.
- 11 N. A. Finkel'shtein and L. K. Sosnovskaya, Russ. J. Inorg. Chem., 21 (1976) 1423.
- 12 J. Liang and Y. Zhang, Huaxue Wuebao, 4 (1983) 163.
- 13 D. Schultze, Thermochim. Acta, 190 (1991) 77.
- 14 M. S. Golubeva and B. S. Medvedev, Russ. J. Inorg. Chem., 7 (1962) 1350.
- 15 C. N. Wijayasekera and B. E. Mellander, Solid State Ionics, 45 (1991) 293.
- 16 J. K. Liang, Y. L. Zhang, J. S. Yang and J. P. Ye, J. Chin. Silicate Soc., 15 (1987) 157.
- 17 R. D. Shannon, Acta Cryst., A32 (1976) 751.

Zusammenfassung — Mittels DTA und ergänzender Röntgendiffraktion wurden sechs binäre Systeme untersucht. In den Systemen Li₂SO₄-MSO₄ (M = Mg, Co, Ni) existiert ein primäres Mischkristall mit α -Li₂SO₄-Struktur (Hochtemperaturform) und eine inkongruent schmelzende Verbindung Li₂My(SO₄)_{1+y}: y=2 für Mg und y=1 für Co und Ni. In den Systemen Li₂SO₄-Li₃XO₄ (X=P, V), die sich sehr voneinander unterscheiden, existieren nur primäre Mischkristalle. Im System Li₂SO₄-Li₂B₄O₇ gibt es weder ein Mischkristall noch eine Zwischenverbindung. Vergleiche zu früheren Untersuchungen wurden angestellt.